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Abstract—To address the abating performance improvements
from device scaling, innovative 2.5-D and 3-D integrated circuits
with vertical interconnects called through-silicon vias (TSVs)
have been widely explored. This paper reviews TSVs with focus
on the following: 1) key drivers for TSV-based integration;
2) TSV fabrication techniques; 3) TSV electrical and thermome-
chanical performance fundamentals and characterization tech-
niques; and 4) novel technologies to attain enhanced performance
beyond the state-of-the-art TSVs.

Index Terms—1Loss, low power, photodefinition, polymer,
stress, through-silicon vias (TSVs).

I. INTRODUCTION: DRIVERS

HE integrated circuit (IC), invented in 1958, has

been the key technology fueling the information rev-
olution owing to its constant improvements in productivity
and performance [1], [2]. Following Moore’s [3] projec-
tion, the number of transistors per unit area has continually
increased with device scaling. This increase in transistor
density has been a key factor in reducing gate cost and
yielding affordable ICs with more functionality [4]. Moreover,
gate speeds have increased by more than 100x, and the
performance of microprocessor ICs has increased by more
than 3000x since the introduction of complementary metal—
oxide—semiconductor (MOS) microprocessors [5]. System per-
formance advancements demand higher bandwidth-density
off-chip communication with reduced power consumption [6].
However, owing to the slower rate of growth of interconnection
and packaging technologies, system performance gains have
been abating, thereby creating a critical demand for innovation
in silicon ancillary technologies [1].

In addition to attaining high bandwidth density and
low-power off-chip communication, the integration of dif-
ferent functionalities, for example, digital, analog, and radio
frequency (RF), is highly desired to attain turnkey computing
and communication solutions. This need for the integration
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of different functionalities has led to the development of het-
erogeneous platforms using system-on-chip architectures [7];
however, there are challenges as described next. Unlike digital
circuits, the performance of analog systems can be affected
by scaling. For example, scaled MOS transistors degrade
matching and noise in analog circuits, while a reduction of
the supply voltage affects signal-to-noise ratios [8]. Moreover,
with respect to RF systems, technologies, such as III-V hetero-
junction bipolar transistor-based solutions, may be needed for
performance and cost effectiveness of power amplifiers [9].
In addition, there is a need to integrate antennas on a plat-
form with an RFIC to enable phased arrays for millimeter-
wave communication [10]. These needs for the integration
of different technologies with an optimized technology for
each IC necessitate the development of innovative system
interconnection platforms.

A. 2.5-D and 3-D Integration Platforms

High bandwidth density, low-power chip-to-chip communi-
cation, and heterogeneous integration have been key drivers
for innovative system integration technologies. Two such
highly explored technologies are 2.5-D and 3-D platforms
enabling the integration of a wide range of chip
technologies [1], [11]-[13]. In general, 2.5-D integration is
defined as the assembly of multiple ICs (in a 2-D plane) over
passive interposer substrates, such as silicon (without active
devices), glass, or fine-pitch organic substrates [14]-[16].
In addition to passive interposers, active interposers have
also been gaining interest recently [17]. Owing to the finer
pitch wiring and shorter chip-to-chip distance compared
with conventional integration, 2.5-D integration enables high
bandwidth density and low-power communication between
heterogeneous ICs. Utilizing 2.5-D platforms, a wide range
of integration capabilities have been demonstrated in the
literature. Field-programmable gate arrays with a digital-
to-analog converter integrated on a silicon interposer [12],
a millimeter-wave transceiver with a silicon interposer
supporting an RFIC and antennas [18], and a heterogeneous
integration of a GPS RF receiver chip, a baseband ARM
chip, and a DRAM chip on a silicon substrate [19] have
been shown in the literature. Moreover, to attain even higher
bandwidth density and lower power communication between
chips, 3-D integration is highly explored in the literature [1]
and is defined as the stacking of layers with active devices
(for example, stacking of memory and logic chips or analog
and digital chips).
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Silicon Interposer

Fig. 1.  3-D system featuring a silicon interposer with TSVs supporting
heterogeneous ICs.

B. TSVs as Key Enablers for 2.5-D and 3-D Integration

Vertical interconnections, called through-silicon
vias (TSVs), play a key role in enabling 2.5-D and
3-D integration. TSVs consist of metal conductors
(commonly copper) insulated from silicon commonly
using a thin dielectric liner. Alternative interconnection
technologies for stacking include wire bonding, which is
electrically inferior and has limited interconnection density
compared with TSVs, and proximity communication, such as
inductive coupling [20]-[22]. In addition to the TSV-based
3-D integration, monolithic 3-D integration is promising
to enable the stacking of transistor layers using monolithic
interlayer vias [23], [24]. Moreover, die-to-die interconnection
using a silicon bridge has also been shown in the
literature [25]; here, no TSVs are needed in the silicon
bridges, since they are buried in the organic package. This
paper focuses on TSVs for 2.5-D and 3-D ICs, as shown
in Fig. 1.

C. TSV Electrical and Thermomechanical Performance

Understanding the electrical and thermomechanical
behaviors of TSVs is critical to build 2.5-D and 3-D systems
with enhanced performance. For example, for a system with an
RFIC and antennas on an interposer, the TSVs need to support
the passage of RF signals (with typically less than 0.6-dB
insertion loss for 60-GHz applications [26]) from different
RF blocks on a circuit board to the IC on the interposer.
Consequently, understanding the electrical losses and
impedance control of such TSVs is critical, and such an
understanding leads to the foundation of novel technology
development. Moreover, TSV electrical and thermomechanical
performances depend on material properties, dimensions, and
geometrical arrangement; poor TSV material choices and
designs could affect the system performance. In addition,
it is critical to accurately characterize the electrical and
thermomechanical performances of TSVs to validate designs,
identify bottlenecks, and improve manufacturability.

This paper presents a review of TSV technologies with
fabrication and characterization techniques described
in Section II. Novel TSV technologies for enhanced
performance are described in Section III. In addition to
developing high-performance TSV technologies, reliable
assembly and efficient cooling (including isolation) are other
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Fig. 2. TSV fabrication flow.

key requirements for 2.5-D and 3-D integration as discussed
in the literature [27]-[30].

II. TECHNOLOGY AND PERFORMANCE

This section describes TSV fabrication technologies and
explores the fundamentals of TSV electrical and thermo-
mechanical performances along with their characterization
techniques.

A. Fabrication Techniques and Specifications

As shown in Fig. 2, the fabrication of TSVs begins with via
etching commonly implemented using a Bosch process with
alternating etch and passivation cycles [31]. Either blind or
through vias may be fabricated. To control critical dimensions
during etching, various endpoint detection techniques have
been shown in the literature using optical-emission spec-
troscopy [32], Langmuir probe [33], laser interferometry [34],
and RF sensors [35]. Moreover, interferometry-based methods
have been implemented for blind vias to control the base
critical dimensions of the vias [36]. Once vias are etched,
a dielectric deposition or growth is performed yielding a
thin (<1 pm) dielectric isolation liner (for example, silicon
dioxide). Next, a barrier/adhesion layer is deposited, for
example, TaN or TiN [37], followed by seed layer deposi-
tion (commonly copper). The barrier/adhesion layer prevents
copper diffusion into the silicon substrate and also provides
adhesion between the seed layer and the dielectric liner.
Once the seed layer is deposited, void-free superfill copper
electroplating is performed [38]. Following TSV metallization,
chemical-mechanical polishing (CMP) is performed to remove
additional metal [39]. Next, in the case of blind vias, the
back-side silicon is removed, using either polishing or etching,
to expose the TSVs.

The fabrication of TSVs can be performed in different
sequences with respect to front-end-of-line (FEOL) transis-
tor fabrication and back-end-of-line (BEOL) metallization.
For ICs, the TSV fabrication process is commonly classified
into three types: via-first with TSVs fabricated prior to FEOL,
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TABLE I
COMPARISON OF TSV FABRICATION METHODS
Specifications Via-first [40]-[42] Via-middle [43], [44] Via-last [45], [46] I“terp"s‘izs[]lz]’ 471,
1 Process Before FEOL After FE]‘S)ELO‘}i‘d before  \fier FEOL and BEOL ~ Commonly before RDL
Diameter 1-5 pm 3-6 pm 5-10 pm 10-50 pm
Conductor W and polysilicon Commonly copper Copper Copper
Thermal oxide growth More metallization Ease of manufacturing
4 Advantages for liners yielding better options compared to on wafers from different Ease of fabrication
isolation via-first manufacturers
Limited metallization Conformal liners demand Control of via ali "
5 Challenges options and higher deposition of greater Ontro? of Via augnmen Electrical loss
L . challenging
resistance thickness
via-middle with TSVs fabricated following FEOL but prior —
to BEOL, and via-last with TSVs fabricated following FEOL
and BEOL either before or after wafer thinning [41], [42]. R /2 R /2
Since via-first involves TSVs fabricated prior to FEOL, the
TSVs must sustain subsequent high-temperature processing G
N ° C . . L . Si
steps (~1000 °C) limiting the via II.l(?taHlZatl(?Il optlf)r{s L/2 Cox Cox L/2
(for example, tungsten and doped polysilicon, which exhibit
higher electrical resistivity compared with copper). Compared
with via-first, via-middle TSV processing provides greater L/2 L/2
freedom in the metallization (including copper), since BEOL Cs;
processing temperatures are commonly less than 400 °C.
Moreover, compared with via-first and via-middle, the via-last R/ 2 R/ 2
process can be implemented on a wafer fabricated by other
manufacturers [49]. However, TSV alignment to metal pads -
and FEOL could be challenging when the via-last process -
is performed from the back side of a thinned bonded wafer. Fig. 3. Signal-ground TSV pair circuit model [51].
In addition to ICs, the TSVs for interposers can be fabricated . . L.
o R . The per-unit-length resistance is given by
before or after metallization and are larger in dimensions.
Commonly, the interposer TSVs are fabricated before redistri- R, = ./R? + R2 (1)
. I .. . . u detsy acTsy?
bution layer metallization similar to via-middle TSVs [50].
Table I shows a comparison between the TSV fabrication Where
processes and their specifications. Ricrsy = Lz;
Tr
H p
RaCTsv = (27Tf5) (_) —
B. TSV Electrical Fundamentals and Characterization /) \ 2ry/ p* —4r?
and

TSV electrical performance is dependent on various factors,
including material, dimensions, arrangement, and frequency of
operation. To capture the impact of these factors, resistance,
inductance, conductance, and capacitance (RLGC) compact
physical models have been widely explored in the litera-
ture [51]-[56]. Moreover, Pi or T equivalent circuit mod-
els using such RLGC models help understand the behav-
ior of TSVs. As shown in Fig. 3, for a signal-ground
TSV pair, the TSVs are modeled using resistors and inductors
with silicon conductance, and oxide and silicon capacitances
between the signal and ground TSVs. For simplicity, the
depletion capacitance is neglected (assuming floating silicon).
Low-frequency/DC TSV models are demonstrated in the
literature [57]. Since it is critical to understand the
frequency-dependent behavior of TSVs, this is addressed
next using per-unit-length RLGC equations as demonstrated
in [51] and [54].

s= |-
muf

In Equation (1), p is the resistivity of copper, r is the copper
via radius, p is the TSV pitch, f is the frequency, u is the
permeability, and J is the skin depth.

Next, the per-unit-length inductance is given by

R
L, = [ﬁ cosh™! (ﬁ)] + “ ).
bis 2r 2n f
Moreover, the models for capacitance and conductance per
unit length are shown as follows, where € is the permittivity,
toxide 1S the thickness of dielectric liner, and ogp is the

substrate conductivity.
First, the per-unit-length oxide capacitance is evaluated as

3)

)

27 €oxide

Cuoxide = ln (r+toxide) .
r
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TABLE 11
TSV PERFORMANCE AS A FUNCTION OF DIFFERENT VARIABLES. MI = MINIMAL IMPACT, L = LOW FREQUENCY, AND H = HIGH FREQUENCY

Increasing Resistance Inductance Capacitance Conductance Impedance Insertion loss

1 Diameter 1 1 T T 1 L TH

2 Length I N n N MI n

3 Pitch 0 T J 3 T L JH
Silicon

4 conductivity MI MI T T + T
Metal

S conductivity + + MI MI + +

6 Liner thickness MI MI 1 1T 1

7 Frequency T I 1 T 1L JH 1

Next, the per-unit-length substrate capacitance and conduc-
tance between the signal and ground TSVs are evaluated first
accounting for the combined contribution of the capacitance
and conductance components as

C;sub _ mesup(l — j(tandg + tan de)) @)

2
4 4
In (Z(r‘i’toxide) + (2(r+toxide)) -1 )

where tan d; represents the polarization losses of silicon and
can be considered zero for the TSVs with silicon dioxide
liner [51]. Moreover, tand, represents losses as a result of
the conductivity of silicon where

1

WEsub PSi

Next, the combined capacitance and the conductance com-
ponent of the TSVs with silicon dioxide liner is given by

1
- (6)
+tog—t o

Ugub
From the calculated C,,,, the TSV capacitance and the
conductance are extracted as follows:

C, = Re(CuT‘mﬂ)

tan o, =

5)

Cu Total — 1

Cu oxide

(7
and

G, = _CUIm(CuTma])‘ ®)

Using the RLGC values, impedance and insertion loss
can be extracted. Next, considering the models, the impact
of increasing radius, length, pitch, silicon conductivity,
metal conductivity, liner thickness and frequency on RLGC,
impedance, and insertion loss are shown in Table II. The
impact on insertion loss is considered accounting fre-
quency [62], since TSV behavior is frequency dependent with
four distinct regions [51]: slow-wave, transition, dielectric
quasi-TEM, and skin effect. At low frequencies, the effects
of R, L, and Cyxige On the loss are greater, since the slow-
wave mode electrically shields the silicon substrate. At higher
frequencies, the impact of substrate capacitance and conduc-
tance is greater due to higher losses in silicon. Moreover, with
respect to the TSV capacitance, as the frequency increases,
the capacitance reduces due to transition from the slow-wave
mode to the dielectric quasi-TEM mode when the frequency

is higher than the relaxation frequency of the silicon substrate
(silicon acts as a dielectric) [51], [63].

In addition to understanding TSV electrical performance
using compact physical models, TSV characterization is crit-
ical to validate models and simulations. At DC frequencies,
the four-point resistance measurement method can accurately
measure TSV resistance, and TSV-to-silicon leakage measure-
ments can provide insight into the quality of a dielectric isola-
tion layer. The commonly measured TSV DC resistance values
are in the range of 20-100 m€2, and the TSV leakage values
before failure are <1 nA [57], [69], [70]. Moreover, at low fre-
quencies, capacitance can be measured using impedance-based
measurement techniques [69], [71]. For capacitance measure-
ments, relatively large capacitance values are needed to mea-
sure above a tool’s resolution requiring bundling of TSVs with
all the TSVs electrically connected to a metal probing pad and
the silicon around each TSV electrically grounded using ohmic
rings around each TSV [69]. Consequently, de-embedding is
needed and implemented in the literature by subtracting the
capacitance of horizontal wires from the total capacitance.
Dividing the result by the number of TSVs yields the capaci-
tance per TSV commonly measured close to 100 fF [69], [70].
Last, for higher frequencies, two-port and one-port mea-
surements have been explored in the literature [26], [58],
[63], [72]-[74]. With TSV high-frequency measurements, de-
embedding is critical to understand the loss of TSVs and has
been demonstrated in the literature using techniques, such
as L-2L, Thru-Reflect-Line (TRL), two-port open-short, and
one-port open-short [58]-[61], as explained in Table III.
Next, the RLGC values of TSVs can be extracted from the
de-embedded TSVs using either Y or Z parameters or using
transmission-line-based extraction techniques [54], [63].

Moreover, along with understanding the electrical perfor-
mance of TSVs, it is critical to understand the interactions
between TSVs, as well as TSVs and active devices. The
coupling between TSVs is dependent on the capacitance and
conductance dominated impedance and losses between the
TSVs; the impedance and the losses depend on liner thickness,
silicon conductivity, and TSV pitch [75]. The impact of
TSV-to-TSV coupling can be reduced using ground shielding
TSVs between signal TSVs [12]. Moreover, the TS V-to-device
coupling defines a keep out zone (KOZ) for devices and
needs to be considered during TSV placement. With respect
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TABLE III
COMPARISON OF TSV DE-EMBEDDING TECHNIQUES IN THE LITERATURE

Techniques Principle Benefit Limitation
1 TRL [58] Second and third tier TRL Accurate de-embedding Difficulty in obtaining reference
implementation demonstrated up to 60 GHz impedances for 3D transitions
2 Single-port [59] Open and short structures for Simpler fabrication for RLGC' En;r:liugnaog‘;lt:)trinaﬁchciuﬁie[f
glep RLGC extraction extraction pens anc . g
frequencies
TSV-trace-TSV links with Simpler TSV loss extraction Demonstrated in the literature
3 L-2L [60] . P up to 50 GHz; application at
different trace lengths structures ; . .
higher frequencies unknown
Open-short structures with Simpler TSV loss extraction Difficult to obtain accurate
4 Open-short [61] ABC'D matrices to extract TSV P > opens and shorts at higher

loss

structures .
frequencies

to immunity for TSV-to-device coupling, FinFETs have been
shown to have superior performance compared with planar
MOSFETsS due to only capacitive coupling being dominant in
the ON-state compared with noise amplification through the
bulk transconductance for planar MOSFETs [76]. To reduce
TSV-to-device coupling, the use of a guard ring around TSVs
may help [75].

Equipped with understanding of TSV fabrication tech-
niques and electrical performance, the next critical factor
reviewed is thermomechanical reliability fundamentals and
characterization.

C. TSV Thermomechanical Fundamentals
and Characterization

Since copper expands significantly more than silicon when
a thermal load is applied, TSVs exhibit a unique thermo-
mechanical behavior that may lead to a potential impact
on nearby devices increasing TSV KOZ, cohesive cracks in
copper, cohesive cracks in silicon, and adhesive delamination
of copper vias [77], [78]. Moreover, protrusion of copper
vias called copper pumping has been shown to damage
BEOL structures [79].

To understand TSV stresses, various models have been
shown in the literature using finite element model-
ing [80], [81]. Using a simpler 2-D plane-strain analytical
model (Lamé stress solution), thermal stresses near an infi-
nitely long TSV embedded in an unbound matrix can be
expressed as [82]

2
BAoaAT (R
Oy = ~0gy = ‘T(?) ©)
and
o =0 =0) =0/5=0 (10)

where m refers to the matrix, B 1is the biaxial mod-
ulus, Ao is the coefficient of thermal expansion (CTE)
mismatch, AT is the differential thermal load, R is the
TSV radius, and r is the distance from the TSV center.
Equation (9) shows TSV stresses are higher for larger diameter
TSVs and reduce as the distance increases from the TSVs.

Moreover, in addition to TSV dimensions, the TSV stresses
also depend on thermal history and copper microstructure
affecting the copper plasticity, and thus, these factors must
be carefully considered while designing TSVs [83].

With respect to evaluating the impact of TSV stress and esti-
mating KOZ, models have been shown in the literature [84].
In addition, with matured TSV manufacturing techniques
and reduction in TSV diameters, ICs with minimal impact
on the device performance due to the presence of TSVs
have been demonstrated in the literature [85]. Moreover,
with respect to copper pumping, pre-CMP anneal and copper
microstructure control techniques have been demonstrated in
the literature to control TSV protrusions and, thereby, improve
reliability [86]-[88]. While the TSV pumping challenge has
been addressed by pre-CMP anneal and microstructure con-
trol, the annealing process yields silicon with tensile strains.
To address this challenge, a CMP stop layer optimization
technique has been demonstrated using a CMP stop layer
with 4x CTE and one third elasticity modulus [89]. Owing
to the CTE and elasticity modulus properties, the CMP
stop layer shrinks following pre-CMP anneal and results
in compressive strains in the silicon balancing the tensile
strains. Consequently, the CMP stop layer optimization tech-
nique reduces TSV KOZ significantly. Lastly, with respect
to structural failures, TSV cracks can result after thermal
cycling demanding novel solutions to reduce TSV stress [78].
With improved manufacturing and designs, TSVs have been
demonstrated without failures up to 1000 thermal cycles based
on the JEDEC standards [90].

In addition to understanding TSV thermomechanical behav-
ior using modeling and simulations, it is critical to characterize
stresses in standalone and stacked ICs with TSVs to prove
their reliability. Efforts in TSV stress/strain measurements
for TSV reliability exploration include micro-Raman spec-
troscopy [64], [65], bending beam technique [66], indenta-
tion [67], and synchrotron x-ray diffraction (XRD) [91], as
shown in Table IV. In comparison, synchrotron XRD seems
promising, since it can measure all the stress components
in a copper via and the surrounding silicon with minimal
destruction to the TSV sample. Synchrotron XRD strain mea-
surements for standalone wafers with different types of TSVs
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TABLE IV
COMPARISON OF TSV STRESS MEASUREMENT TECHNIQUES IN THE LITERATURE

Techniques Principle

Benefit Limitation

Micro-Raman spectroscopy

[64], [65] an impinging laser

Frequency shift measurement of

Localized near surface Si stress
measurement

Stress in copper cannot be
measured

2 Bending beam technique [66] Curvature measurement

Stress measurement in Si and Cu Averaged stresses obtained

Residual-stress-induced normal

Requires a known stress-free

3 Indentation [67] Stress measurement in Si and Cu
load measurement state
Raster scanning under a micro Stress measurement in Si and . . .
4 Synchrotron XRD [68] focused x-ray beam Cu with minimum destruction Challenging data interpretation
Silicon Silicon Silicon obtained by etching silicon up to a specific depth around the
= e TSVs [100].

SiO, Liner h

(a) (b) (c)

Fig. 4. Schematics of (a) TSVs with silicon dioxide liner, (b) polymer-clad
TSVs, and (c) polymer-embedded vias.

and data interpretation using beam-intensity-based method
have been demonstrated in [92]. Moreover, synchrotron XRD
strain measurements for stacked ICs with TSVs have also been
shown in the literature [93].

III. INNOVATIONS

To attain a significant reduction in TSV stress and electrical
loss, this section describes select innovations in TSVs with the
main focus being on polymer-enhanced TSVs. The polymer-
enhanced TSVs in this section include polymer-clad TSVs
with thick polymer liners, polymer-embedded vias with copper
vias embedded in polymer wells within silicon, and coaxial
configurations of the polymer-embedded vias [94], [95]. Fig. 4
shows the structures of the polymer-enhanced TSVs in com-
parison with the conventional TSVs.

A. Polymer-Clad TSVs

To reduce TSV stress and capacitance, various liner tech-
niques have been explored in the literature, including air and
thick polymer. Compared with silicon dioxide liner, air liners
with a lower relative dielectric constant and thick polymer
liners can reduce TSV stress and liner capacitance. Moreover,
owing to the liner capacitance reduction, the air and thick
polymer liners also reduce the impact of slow-wave mode
lowering electrical losses [96].

Thick (~30 um) air liners can be fabricated by etching
silicon around the fabricated TSVs [97], whereas thin (~3 xm)
air liners can be fabricated by depositing a dielectric layer over
circular trenches in silicon until the trenches get pinched off or
alternatively by using a sacrificial material filled in the circular
trenches [98] followed by TSV fabrication at the center of
the trenches [99]. Moreover, TSVs with air isolation can be

Compared with the air liners, the main advantage of using
polymer liners is that the fabrication of horizontal inter-
connects is easier over polymer liners than air liners. With
respect to TSV stress, various modeling results have shown the
reduction of stress for TSVs with thick polymer liners. Using
a 5-um thick benzocyclobutene (BCB) stress buffer layer for
30-um diameter vias, Ryu et al. [101] have shown a significant
reduction in radial and shear stress along Cu/BCB and BCB/Si
interfaces compared with Cu/Si interface. Using Parylene as a
liner, Chen et al. [102] have shown that normal stresses in cop-
per, dielectric, and silicon are lower for the TSVs with a Pary-
lene liner compared with the TSVs with silicon dioxide liner;
when the Parylene thickness is increased from 1 to 15 um,
the normal stresses in copper, dielectric, and silicon are
reduced by half. In addition to modeling, thermomechanical
characterization of polymer-clad TSVs and comparison with
the TSVs with silicon dioxide liner has been demonstrated
in [103] using synchrotron XRD showing a 30% reduction
in TSV strains at the liner—silicon interface. Moreover, with
respect to TSV capacitance, Thadesar and Bakir [104] have
shown using modeling that the TSV dielectric capacitance
can be reduced from 3.515 to 0.165 pF using 20-xm-thick
SU-8 liners compared with 1-um-thick silicon dioxide liners
for 400-um tall and 80-xm diameter copper vias.

The fabrication of polymer liners has been described in the
literature using polymer vapor deposition [107], polymer fill-
ing in circular trenches within silicon [108], photodefinition of
polymer-filled vias with a temporary release film to fabricate
coaxial TSVs [109], laser ablation of polymer-filled vias [110],
and photodefined polymer with a perforated dielectric layer,
called mesh layer, at the base [94]. By comparison, the
polymer liner formation process using photodefined polymer is
simpler. Fig. 5 shows 390-um tall copper TSVs with ~80 um
diameter and surrounded by a ~20-um-thick photodefined
polymer cladding on a 250-um pitch.

B. Polymer-Embedded Vias

To achieve further electrical performance enhancement com-
pared with polymer-clad TSVs, polymer-embedded vias are
explored for silicon interposers as described next.

High-resistivity silicon interposers can achieve a reduc-
tion in TSV losses. However, high-resistivity silicon is
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TABLE V
COMPARISON OF POLYMER-EMBEDDED VIAS AND POLYMER-CLAD TSVs WITH OTHER TSV TECHNOLOGIES

No. Parameters Polym.er-embedded Polymer-clad TSVs SiOs9 liner TSVs Air liner TSVs [98] Glass Vias [106]
vias [105] [94]

Copper via
1 diameter 100/65 pm 80 pm ~10 pm 20 pm 15 pm at top

TSV height 270/370 pm 390 pm 100 pm 65 pm 30 pm

TSV pitch 250/150 pm 250 pm 40 pm min. 50 pm 27 pm

. ~1.2 dB at 29 GHz ~0.1 dB at 20 GHz
4 Lt(.;S es zte;lclgh N((t)lﬁciBin?; 3?”(;1;[2 Low (for a chain with 2 Low (thin glass for a
quency PO TSVs) [50] chain with 2 vias)
5 Ease of fabrication High High Very high Low Moderate
6 Special features Photodefinition Photodefinition Simpler fabrication Metalhzapon over Pa.ngl—sgale
air liners fabrication
Copper Vias
- SU-8.
Cross-section View
EHT = 3.00 kV
o= 7mm Fig. 6. Polymer-embedded vias with copper vias in SU-8 wells within
silicon [112].
Cross-section View
A comparison of polymer-embedded vias and polymer-clad
Fig. 5. Polymer-clad TSVs with a thick SU-8 liner [94].

expensive [51], [111], and thus, there has been an effort
to explore glass interposers [106]. However, glass requires
serial ablation to form vias and is a poor thermal conductor
compared with silicon. In comparison, polymer-embedded vias
consist of copper vias embedded in photodefined polymer
wells within the commonly implemented 10-Q-cm resistivity
silicon, thereby providing a wafer-scale batch fabrication solu-
tion attaining vias in low-loss regions within an economical
silicon [112]. Fig. 6 shows 65-um diameter and 370-um
tall polymer-embedded vias on a 150-um pitch within a
1800 um x 1800 um well in silicon.

Similar to polymer-embedded vias, copper vias in dielectric
regions within silicon have been demonstrated in the
literature using: 1) a metal coating over silicon pillars in
polymer wells [113] and 2) glass reflow over etched areas
in silicon followed by silicon pillar etching [114]. Compared
with these processes, photodefined polymer-embedded
vias provide low-loss TSVs with a simpler fabrication
process.

TSVs to different TSV technologies in the literature is shown
in Table V.

C. Coaxial TSVs

A coaxial interconnect configuration of polymer-embedded
vias can be formed by placing ground vias around a sig-
nal via [105]. The technique of forming coaxial vias using
ground vias is easier to implement compared with other
coaxial via techniques in the literature [73], [109], [115] and,
consequently, is addressed here.

The coaxial configuration can reduce TSV loss and coupling
in addition to providing an impedance-matched intercon-
nection. Fig. 7 shows the fabricated 285-um tall polymer-
enhanced coaxial vias within a 1800 gm x 1800 xm well
in silicon prior to the top layer metallization. The copper
via diameter is 65 um and the signal-to-ground via pitch
is 125 pum. To better compare coaxial vias in the literature,
a comparison is shown in Table VI. Moreover, RF mea-
surements were performed on open and short measurement
structures of the coaxial vias with 150-um signal-to-ground
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TABLE VI
COMPARISON OF THE DEMONSTRATED COAXIAL VIAS TO OTHER COAXIAL TSV TECHNOLOGIES FROM THE LITERATURE

Photodefined coax

Laser ablated

Laser ablated coax

Photodefined coax

No. Parameters TSVs with ground Si02 liner TSVs
shield vias [105] annular coax [115] [73] [109]
Copper via
1 diameter 65 pm 10 pm 42 pm 70 pm 100 pm
2 TSV height 285 pum 100 pm 205 pm 150 pum 300 pm
. . Surrounded by
3 TSV pitch 150/125/95 pm 40 pm min. 450 pm HOn-coax 500 pm
Insertion loss at 0.1 dB at 50 GHz ~1.2 dB at 29 GHz ~5.5dB at 20 GHz  0.044 dB at 10 GHz ~0.25 dB at 10
4 high frequenc (for one coaxial (for a chain with 2 (for a chain with 4 (for one coaxial GHz (for a
gh trequency TSV) TSVs) [50] TSVs) TSV) TSV-trace link)
5 Ease of fabrication High Very high Moderate Moderate Moderate
6 Special features Photodefinition Simpler fabrication Laminated ABF Coax and non-coax Photodefinition

with laser ablation

in parallel

Fig. 7.

Fig. 8.

Polymer-embedded coaxial TSVs with ground shield vias [105].
60
& so -
‘?': 40 -
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Impedance extraction from measurements of polymer-embedded

coaxial TSVs with ground vias [95].

via pitch yielding a wideband impedance match to 50 €,
as shown in Fig. 8.

IV. CONCLUSION

Key drivers leading to the development of TSV-based inte-
gration techniques are discussed along with TSV fabrication
technologies. Moreover, TSV electrical and thermomechanical
behaviors are described along with measurement techniques
for TSV characterization. Last, novel techniques, including
polymer-clad TSVs, polymer-embedded vias, and coaxial vias,
are demonstrated to attain enhanced TSV performance.
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